3.29.94 \(\int \frac {(c e+d e x)^4}{(a+b (c+d x)^3)^2} \, dx\) [2894]

3.29.94.1 Optimal result
3.29.94.2 Mathematica [A] (verified)
3.29.94.3 Rubi [A] (verified)
3.29.94.4 Maple [C] (verified)
3.29.94.5 Fricas [B] (verification not implemented)
3.29.94.6 Sympy [A] (verification not implemented)
3.29.94.7 Maxima [F]
3.29.94.8 Giac [A] (verification not implemented)
3.29.94.9 Mupad [B] (verification not implemented)

3.29.94.1 Optimal result

Integrand size = 24, antiderivative size = 184 \[ \int \frac {(c e+d e x)^4}{\left (a+b (c+d x)^3\right )^2} \, dx=-\frac {e^4 (c+d x)^2}{3 b d \left (a+b (c+d x)^3\right )}-\frac {2 e^4 \arctan \left (\frac {\sqrt [3]{a}-2 \sqrt [3]{b} (c+d x)}{\sqrt {3} \sqrt [3]{a}}\right )}{3 \sqrt {3} \sqrt [3]{a} b^{5/3} d}-\frac {2 e^4 \log \left (\sqrt [3]{a}+\sqrt [3]{b} (c+d x)\right )}{9 \sqrt [3]{a} b^{5/3} d}+\frac {e^4 \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+b^{2/3} (c+d x)^2\right )}{9 \sqrt [3]{a} b^{5/3} d} \]

output
-1/3*e^4*(d*x+c)^2/b/d/(a+b*(d*x+c)^3)-2/9*e^4*ln(a^(1/3)+b^(1/3)*(d*x+c)) 
/a^(1/3)/b^(5/3)/d+1/9*e^4*ln(a^(2/3)-a^(1/3)*b^(1/3)*(d*x+c)+b^(2/3)*(d*x 
+c)^2)/a^(1/3)/b^(5/3)/d-2/9*e^4*arctan(1/3*(a^(1/3)-2*b^(1/3)*(d*x+c))/a^ 
(1/3)*3^(1/2))/a^(1/3)/b^(5/3)/d*3^(1/2)
 
3.29.94.2 Mathematica [A] (verified)

Time = 0.09 (sec) , antiderivative size = 155, normalized size of antiderivative = 0.84 \[ \int \frac {(c e+d e x)^4}{\left (a+b (c+d x)^3\right )^2} \, dx=\frac {e^4 \left (-\frac {3 b^{2/3} (c+d x)^2}{a+b (c+d x)^3}+\frac {2 \sqrt {3} \arctan \left (\frac {-\sqrt [3]{a}+2 \sqrt [3]{b} (c+d x)}{\sqrt {3} \sqrt [3]{a}}\right )}{\sqrt [3]{a}}-\frac {2 \log \left (\sqrt [3]{a}+\sqrt [3]{b} (c+d x)\right )}{\sqrt [3]{a}}+\frac {\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+b^{2/3} (c+d x)^2\right )}{\sqrt [3]{a}}\right )}{9 b^{5/3} d} \]

input
Integrate[(c*e + d*e*x)^4/(a + b*(c + d*x)^3)^2,x]
 
output
(e^4*((-3*b^(2/3)*(c + d*x)^2)/(a + b*(c + d*x)^3) + (2*Sqrt[3]*ArcTan[(-a 
^(1/3) + 2*b^(1/3)*(c + d*x))/(Sqrt[3]*a^(1/3))])/a^(1/3) - (2*Log[a^(1/3) 
 + b^(1/3)*(c + d*x)])/a^(1/3) + Log[a^(2/3) - a^(1/3)*b^(1/3)*(c + d*x) + 
 b^(2/3)*(c + d*x)^2]/a^(1/3)))/(9*b^(5/3)*d)
 
3.29.94.3 Rubi [A] (verified)

Time = 0.32 (sec) , antiderivative size = 174, normalized size of antiderivative = 0.95, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.417, Rules used = {895, 817, 821, 16, 1142, 25, 27, 1082, 217, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(c e+d e x)^4}{\left (a+b (c+d x)^3\right )^2} \, dx\)

\(\Big \downarrow \) 895

\(\displaystyle \frac {e^4 \int \frac {(c+d x)^4}{\left (b (c+d x)^3+a\right )^2}d(c+d x)}{d}\)

\(\Big \downarrow \) 817

\(\displaystyle \frac {e^4 \left (\frac {2 \int \frac {c+d x}{b (c+d x)^3+a}d(c+d x)}{3 b}-\frac {(c+d x)^2}{3 b \left (a+b (c+d x)^3\right )}\right )}{d}\)

\(\Big \downarrow \) 821

\(\displaystyle \frac {e^4 \left (\frac {2 \left (\frac {\int \frac {\sqrt [3]{b} (c+d x)+\sqrt [3]{a}}{b^{2/3} (c+d x)^2-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+a^{2/3}}d(c+d x)}{3 \sqrt [3]{a} \sqrt [3]{b}}-\frac {\int \frac {1}{\sqrt [3]{b} (c+d x)+\sqrt [3]{a}}d(c+d x)}{3 \sqrt [3]{a} \sqrt [3]{b}}\right )}{3 b}-\frac {(c+d x)^2}{3 b \left (a+b (c+d x)^3\right )}\right )}{d}\)

\(\Big \downarrow \) 16

\(\displaystyle \frac {e^4 \left (\frac {2 \left (\frac {\int \frac {\sqrt [3]{b} (c+d x)+\sqrt [3]{a}}{b^{2/3} (c+d x)^2-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+a^{2/3}}d(c+d x)}{3 \sqrt [3]{a} \sqrt [3]{b}}-\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} (c+d x)\right )}{3 \sqrt [3]{a} b^{2/3}}\right )}{3 b}-\frac {(c+d x)^2}{3 b \left (a+b (c+d x)^3\right )}\right )}{d}\)

\(\Big \downarrow \) 1142

\(\displaystyle \frac {e^4 \left (\frac {2 \left (\frac {\frac {3}{2} \sqrt [3]{a} \int \frac {1}{b^{2/3} (c+d x)^2-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+a^{2/3}}d(c+d x)+\frac {\int -\frac {\sqrt [3]{b} \left (\sqrt [3]{a}-2 \sqrt [3]{b} (c+d x)\right )}{b^{2/3} (c+d x)^2-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+a^{2/3}}d(c+d x)}{2 \sqrt [3]{b}}}{3 \sqrt [3]{a} \sqrt [3]{b}}-\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} (c+d x)\right )}{3 \sqrt [3]{a} b^{2/3}}\right )}{3 b}-\frac {(c+d x)^2}{3 b \left (a+b (c+d x)^3\right )}\right )}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {e^4 \left (\frac {2 \left (\frac {\frac {3}{2} \sqrt [3]{a} \int \frac {1}{b^{2/3} (c+d x)^2-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+a^{2/3}}d(c+d x)-\frac {\int \frac {\sqrt [3]{b} \left (\sqrt [3]{a}-2 \sqrt [3]{b} (c+d x)\right )}{b^{2/3} (c+d x)^2-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+a^{2/3}}d(c+d x)}{2 \sqrt [3]{b}}}{3 \sqrt [3]{a} \sqrt [3]{b}}-\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} (c+d x)\right )}{3 \sqrt [3]{a} b^{2/3}}\right )}{3 b}-\frac {(c+d x)^2}{3 b \left (a+b (c+d x)^3\right )}\right )}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {e^4 \left (\frac {2 \left (\frac {\frac {3}{2} \sqrt [3]{a} \int \frac {1}{b^{2/3} (c+d x)^2-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+a^{2/3}}d(c+d x)-\frac {1}{2} \int \frac {\sqrt [3]{a}-2 \sqrt [3]{b} (c+d x)}{b^{2/3} (c+d x)^2-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+a^{2/3}}d(c+d x)}{3 \sqrt [3]{a} \sqrt [3]{b}}-\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} (c+d x)\right )}{3 \sqrt [3]{a} b^{2/3}}\right )}{3 b}-\frac {(c+d x)^2}{3 b \left (a+b (c+d x)^3\right )}\right )}{d}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {e^4 \left (\frac {2 \left (\frac {\frac {3 \int \frac {1}{-\left (1-\frac {2 \sqrt [3]{b} (c+d x)}{\sqrt [3]{a}}\right )^2-3}d\left (1-\frac {2 \sqrt [3]{b} (c+d x)}{\sqrt [3]{a}}\right )}{\sqrt [3]{b}}-\frac {1}{2} \int \frac {\sqrt [3]{a}-2 \sqrt [3]{b} (c+d x)}{b^{2/3} (c+d x)^2-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+a^{2/3}}d(c+d x)}{3 \sqrt [3]{a} \sqrt [3]{b}}-\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} (c+d x)\right )}{3 \sqrt [3]{a} b^{2/3}}\right )}{3 b}-\frac {(c+d x)^2}{3 b \left (a+b (c+d x)^3\right )}\right )}{d}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {e^4 \left (\frac {2 \left (\frac {-\frac {1}{2} \int \frac {\sqrt [3]{a}-2 \sqrt [3]{b} (c+d x)}{b^{2/3} (c+d x)^2-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+a^{2/3}}d(c+d x)-\frac {\sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} (c+d x)}{\sqrt [3]{a}}}{\sqrt {3}}\right )}{\sqrt [3]{b}}}{3 \sqrt [3]{a} \sqrt [3]{b}}-\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} (c+d x)\right )}{3 \sqrt [3]{a} b^{2/3}}\right )}{3 b}-\frac {(c+d x)^2}{3 b \left (a+b (c+d x)^3\right )}\right )}{d}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {e^4 \left (\frac {2 \left (\frac {\frac {\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+b^{2/3} (c+d x)^2\right )}{2 \sqrt [3]{b}}-\frac {\sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} (c+d x)}{\sqrt [3]{a}}}{\sqrt {3}}\right )}{\sqrt [3]{b}}}{3 \sqrt [3]{a} \sqrt [3]{b}}-\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} (c+d x)\right )}{3 \sqrt [3]{a} b^{2/3}}\right )}{3 b}-\frac {(c+d x)^2}{3 b \left (a+b (c+d x)^3\right )}\right )}{d}\)

input
Int[(c*e + d*e*x)^4/(a + b*(c + d*x)^3)^2,x]
 
output
(e^4*(-1/3*(c + d*x)^2/(b*(a + b*(c + d*x)^3)) + (2*(-1/3*Log[a^(1/3) + b^ 
(1/3)*(c + d*x)]/(a^(1/3)*b^(2/3)) + (-((Sqrt[3]*ArcTan[(1 - (2*b^(1/3)*(c 
 + d*x))/a^(1/3))/Sqrt[3]])/b^(1/3)) + Log[a^(2/3) - a^(1/3)*b^(1/3)*(c + 
d*x) + b^(2/3)*(c + d*x)^2]/(2*b^(1/3)))/(3*a^(1/3)*b^(1/3))))/(3*b)))/d
 

3.29.94.3.1 Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 817
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^( 
n - 1)*(c*x)^(m - n + 1)*((a + b*x^n)^(p + 1)/(b*n*(p + 1))), x] - Simp[c^n 
*((m - n + 1)/(b*n*(p + 1)))   Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x], x 
] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  ! 
ILtQ[(m + n*(p + 1) + 1)/n, 0] && IntBinomialQ[a, b, c, n, m, p, x]
 

rule 821
Int[(x_)/((a_) + (b_.)*(x_)^3), x_Symbol] :> Simp[-(3*Rt[a, 3]*Rt[b, 3])^(- 
1)   Int[1/(Rt[a, 3] + Rt[b, 3]*x), x], x] + Simp[1/(3*Rt[a, 3]*Rt[b, 3]) 
 Int[(Rt[a, 3] + Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3]^2 
*x^2), x], x] /; FreeQ[{a, b}, x]
 

rule 895
Int[(u_)^(m_.)*((a_) + (b_.)*(v_)^(n_))^(p_.), x_Symbol] :> Simp[u^m/(Coeff 
icient[v, x, 1]*v^m)   Subst[Int[x^m*(a + b*x^n)^p, x], x, v], x] /; FreeQ[ 
{a, b, m, n, p}, x] && LinearPairQ[u, v, x]
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1142
Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[(2*c*d - b*e)/(2*c)   Int[1/(a + b*x + c*x^2), x], x] + Simp[e/(2*c) 
Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x]
 
3.29.94.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 3.87 (sec) , antiderivative size = 145, normalized size of antiderivative = 0.79

method result size
default \(e^{4} \left (\frac {-\frac {d \,x^{2}}{3 b}-\frac {2 c x}{3 b}-\frac {c^{2}}{3 d b}}{b \,d^{3} x^{3}+3 b c \,d^{2} x^{2}+3 b \,c^{2} d x +c^{3} b +a}+\frac {2 \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (b \,d^{3} \textit {\_Z}^{3}+3 b c \,d^{2} \textit {\_Z}^{2}+3 b \,c^{2} d \textit {\_Z} +c^{3} b +a \right )}{\sum }\frac {\left (\textit {\_R} d +c \right ) \ln \left (x -\textit {\_R} \right )}{d^{2} \textit {\_R}^{2}+2 c d \textit {\_R} +c^{2}}\right )}{9 b^{2} d}\right )\) \(145\)
risch \(\frac {-\frac {e^{4} d \,x^{2}}{3 b}-\frac {2 e^{4} c x}{3 b}-\frac {c^{2} e^{4}}{3 d b}}{b \,d^{3} x^{3}+3 b c \,d^{2} x^{2}+3 b \,c^{2} d x +c^{3} b +a}+\frac {2 e^{4} \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (b \,d^{3} \textit {\_Z}^{3}+3 b c \,d^{2} \textit {\_Z}^{2}+3 b \,c^{2} d \textit {\_Z} +c^{3} b +a \right )}{\sum }\frac {\left (\textit {\_R} d +c \right ) \ln \left (x -\textit {\_R} \right )}{d^{2} \textit {\_R}^{2}+2 c d \textit {\_R} +c^{2}}\right )}{9 b^{2} d}\) \(153\)

input
int((d*e*x+c*e)^4/(a+b*(d*x+c)^3)^2,x,method=_RETURNVERBOSE)
 
output
e^4*((-1/3*d*x^2/b-2/3*c*x/b-1/3*c^2/d/b)/(b*d^3*x^3+3*b*c*d^2*x^2+3*b*c^2 
*d*x+b*c^3+a)+2/9/b^2/d*sum((_R*d+c)/(_R^2*d^2+2*_R*c*d+c^2)*ln(x-_R),_R=R 
ootOf(_Z^3*b*d^3+3*_Z^2*b*c*d^2+3*_Z*b*c^2*d+b*c^3+a)))
 
3.29.94.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 409 vs. \(2 (145) = 290\).

Time = 0.28 (sec) , antiderivative size = 940, normalized size of antiderivative = 5.11 \[ \int \frac {(c e+d e x)^4}{\left (a+b (c+d x)^3\right )^2} \, dx=\left [-\frac {3 \, a b^{2} d^{2} e^{4} x^{2} + 6 \, a b^{2} c d e^{4} x + 3 \, a b^{2} c^{2} e^{4} - 3 \, \sqrt {\frac {1}{3}} {\left (a b^{2} d^{3} e^{4} x^{3} + 3 \, a b^{2} c d^{2} e^{4} x^{2} + 3 \, a b^{2} c^{2} d e^{4} x + {\left (a b^{2} c^{3} + a^{2} b\right )} e^{4}\right )} \sqrt {\frac {\left (-a b^{2}\right )^{\frac {1}{3}}}{a}} \log \left (\frac {2 \, b^{2} d^{3} x^{3} + 6 \, b^{2} c d^{2} x^{2} + 6 \, b^{2} c^{2} d x + 2 \, b^{2} c^{3} - a b + 3 \, \sqrt {\frac {1}{3}} {\left (a b d x + a b c + 2 \, {\left (d^{2} x^{2} + 2 \, c d x + c^{2}\right )} \left (-a b^{2}\right )^{\frac {2}{3}} + \left (-a b^{2}\right )^{\frac {1}{3}} a\right )} \sqrt {\frac {\left (-a b^{2}\right )^{\frac {1}{3}}}{a}} - 3 \, \left (-a b^{2}\right )^{\frac {2}{3}} {\left (d x + c\right )}}{b d^{3} x^{3} + 3 \, b c d^{2} x^{2} + 3 \, b c^{2} d x + b c^{3} + a}\right ) - {\left (b d^{3} e^{4} x^{3} + 3 \, b c d^{2} e^{4} x^{2} + 3 \, b c^{2} d e^{4} x + {\left (b c^{3} + a\right )} e^{4}\right )} \left (-a b^{2}\right )^{\frac {2}{3}} \log \left (b^{2} d^{2} x^{2} + 2 \, b^{2} c d x + b^{2} c^{2} + \left (-a b^{2}\right )^{\frac {1}{3}} {\left (b d x + b c\right )} + \left (-a b^{2}\right )^{\frac {2}{3}}\right ) + 2 \, {\left (b d^{3} e^{4} x^{3} + 3 \, b c d^{2} e^{4} x^{2} + 3 \, b c^{2} d e^{4} x + {\left (b c^{3} + a\right )} e^{4}\right )} \left (-a b^{2}\right )^{\frac {2}{3}} \log \left (b d x + b c - \left (-a b^{2}\right )^{\frac {1}{3}}\right )}{9 \, {\left (a b^{4} d^{4} x^{3} + 3 \, a b^{4} c d^{3} x^{2} + 3 \, a b^{4} c^{2} d^{2} x + {\left (a b^{4} c^{3} + a^{2} b^{3}\right )} d\right )}}, -\frac {3 \, a b^{2} d^{2} e^{4} x^{2} + 6 \, a b^{2} c d e^{4} x + 3 \, a b^{2} c^{2} e^{4} - 6 \, \sqrt {\frac {1}{3}} {\left (a b^{2} d^{3} e^{4} x^{3} + 3 \, a b^{2} c d^{2} e^{4} x^{2} + 3 \, a b^{2} c^{2} d e^{4} x + {\left (a b^{2} c^{3} + a^{2} b\right )} e^{4}\right )} \sqrt {-\frac {\left (-a b^{2}\right )^{\frac {1}{3}}}{a}} \arctan \left (\frac {\sqrt {\frac {1}{3}} {\left (2 \, b d x + 2 \, b c + \left (-a b^{2}\right )^{\frac {1}{3}}\right )} \sqrt {-\frac {\left (-a b^{2}\right )^{\frac {1}{3}}}{a}}}{b}\right ) - {\left (b d^{3} e^{4} x^{3} + 3 \, b c d^{2} e^{4} x^{2} + 3 \, b c^{2} d e^{4} x + {\left (b c^{3} + a\right )} e^{4}\right )} \left (-a b^{2}\right )^{\frac {2}{3}} \log \left (b^{2} d^{2} x^{2} + 2 \, b^{2} c d x + b^{2} c^{2} + \left (-a b^{2}\right )^{\frac {1}{3}} {\left (b d x + b c\right )} + \left (-a b^{2}\right )^{\frac {2}{3}}\right ) + 2 \, {\left (b d^{3} e^{4} x^{3} + 3 \, b c d^{2} e^{4} x^{2} + 3 \, b c^{2} d e^{4} x + {\left (b c^{3} + a\right )} e^{4}\right )} \left (-a b^{2}\right )^{\frac {2}{3}} \log \left (b d x + b c - \left (-a b^{2}\right )^{\frac {1}{3}}\right )}{9 \, {\left (a b^{4} d^{4} x^{3} + 3 \, a b^{4} c d^{3} x^{2} + 3 \, a b^{4} c^{2} d^{2} x + {\left (a b^{4} c^{3} + a^{2} b^{3}\right )} d\right )}}\right ] \]

input
integrate((d*e*x+c*e)^4/(a+b*(d*x+c)^3)^2,x, algorithm="fricas")
 
output
[-1/9*(3*a*b^2*d^2*e^4*x^2 + 6*a*b^2*c*d*e^4*x + 3*a*b^2*c^2*e^4 - 3*sqrt( 
1/3)*(a*b^2*d^3*e^4*x^3 + 3*a*b^2*c*d^2*e^4*x^2 + 3*a*b^2*c^2*d*e^4*x + (a 
*b^2*c^3 + a^2*b)*e^4)*sqrt((-a*b^2)^(1/3)/a)*log((2*b^2*d^3*x^3 + 6*b^2*c 
*d^2*x^2 + 6*b^2*c^2*d*x + 2*b^2*c^3 - a*b + 3*sqrt(1/3)*(a*b*d*x + a*b*c 
+ 2*(d^2*x^2 + 2*c*d*x + c^2)*(-a*b^2)^(2/3) + (-a*b^2)^(1/3)*a)*sqrt((-a* 
b^2)^(1/3)/a) - 3*(-a*b^2)^(2/3)*(d*x + c))/(b*d^3*x^3 + 3*b*c*d^2*x^2 + 3 
*b*c^2*d*x + b*c^3 + a)) - (b*d^3*e^4*x^3 + 3*b*c*d^2*e^4*x^2 + 3*b*c^2*d* 
e^4*x + (b*c^3 + a)*e^4)*(-a*b^2)^(2/3)*log(b^2*d^2*x^2 + 2*b^2*c*d*x + b^ 
2*c^2 + (-a*b^2)^(1/3)*(b*d*x + b*c) + (-a*b^2)^(2/3)) + 2*(b*d^3*e^4*x^3 
+ 3*b*c*d^2*e^4*x^2 + 3*b*c^2*d*e^4*x + (b*c^3 + a)*e^4)*(-a*b^2)^(2/3)*lo 
g(b*d*x + b*c - (-a*b^2)^(1/3)))/(a*b^4*d^4*x^3 + 3*a*b^4*c*d^3*x^2 + 3*a* 
b^4*c^2*d^2*x + (a*b^4*c^3 + a^2*b^3)*d), -1/9*(3*a*b^2*d^2*e^4*x^2 + 6*a* 
b^2*c*d*e^4*x + 3*a*b^2*c^2*e^4 - 6*sqrt(1/3)*(a*b^2*d^3*e^4*x^3 + 3*a*b^2 
*c*d^2*e^4*x^2 + 3*a*b^2*c^2*d*e^4*x + (a*b^2*c^3 + a^2*b)*e^4)*sqrt(-(-a* 
b^2)^(1/3)/a)*arctan(sqrt(1/3)*(2*b*d*x + 2*b*c + (-a*b^2)^(1/3))*sqrt(-(- 
a*b^2)^(1/3)/a)/b) - (b*d^3*e^4*x^3 + 3*b*c*d^2*e^4*x^2 + 3*b*c^2*d*e^4*x 
+ (b*c^3 + a)*e^4)*(-a*b^2)^(2/3)*log(b^2*d^2*x^2 + 2*b^2*c*d*x + b^2*c^2 
+ (-a*b^2)^(1/3)*(b*d*x + b*c) + (-a*b^2)^(2/3)) + 2*(b*d^3*e^4*x^3 + 3*b* 
c*d^2*e^4*x^2 + 3*b*c^2*d*e^4*x + (b*c^3 + a)*e^4)*(-a*b^2)^(2/3)*log(b*d* 
x + b*c - (-a*b^2)^(1/3)))/(a*b^4*d^4*x^3 + 3*a*b^4*c*d^3*x^2 + 3*a*b^4...
 
3.29.94.6 Sympy [A] (verification not implemented)

Time = 0.60 (sec) , antiderivative size = 133, normalized size of antiderivative = 0.72 \[ \int \frac {(c e+d e x)^4}{\left (a+b (c+d x)^3\right )^2} \, dx=\frac {- c^{2} e^{4} - 2 c d e^{4} x - d^{2} e^{4} x^{2}}{3 a b d + 3 b^{2} c^{3} d + 9 b^{2} c^{2} d^{2} x + 9 b^{2} c d^{3} x^{2} + 3 b^{2} d^{4} x^{3}} + \frac {e^{4} \operatorname {RootSum} {\left (729 t^{3} a b^{5} + 8, \left ( t \mapsto t \log {\left (x + \frac {81 t^{2} a b^{3} e^{8} + 4 c e^{8}}{4 d e^{8}} \right )} \right )\right )}}{d} \]

input
integrate((d*e*x+c*e)**4/(a+b*(d*x+c)**3)**2,x)
 
output
(-c**2*e**4 - 2*c*d*e**4*x - d**2*e**4*x**2)/(3*a*b*d + 3*b**2*c**3*d + 9* 
b**2*c**2*d**2*x + 9*b**2*c*d**3*x**2 + 3*b**2*d**4*x**3) + e**4*RootSum(7 
29*_t**3*a*b**5 + 8, Lambda(_t, _t*log(x + (81*_t**2*a*b**3*e**8 + 4*c*e** 
8)/(4*d*e**8))))/d
 
3.29.94.7 Maxima [F]

\[ \int \frac {(c e+d e x)^4}{\left (a+b (c+d x)^3\right )^2} \, dx=\int { \frac {{\left (d e x + c e\right )}^{4}}{{\left ({\left (d x + c\right )}^{3} b + a\right )}^{2}} \,d x } \]

input
integrate((d*e*x+c*e)^4/(a+b*(d*x+c)^3)^2,x, algorithm="maxima")
 
output
2/3*e^4*integrate((d*x + c)/(b*d^3*x^3 + 3*b*c*d^2*x^2 + 3*b*c^2*d*x + b*c 
^3 + a), x)/b - 1/3*(d^2*e^4*x^2 + 2*c*d*e^4*x + c^2*e^4)/(b^2*d^4*x^3 + 3 
*b^2*c*d^3*x^2 + 3*b^2*c^2*d^2*x + (b^2*c^3 + a*b)*d)
 
3.29.94.8 Giac [A] (verification not implemented)

Time = 0.32 (sec) , antiderivative size = 224, normalized size of antiderivative = 1.22 \[ \int \frac {(c e+d e x)^4}{\left (a+b (c+d x)^3\right )^2} \, dx=-\frac {2 \, \sqrt {3} \left (-\frac {e^{12}}{a b^{2} d^{3}}\right )^{\frac {1}{3}} \arctan \left (\frac {\sqrt {3} {\left (2 \, a b d x + 2 \, a b c - \left (-a^{2} b\right )^{\frac {2}{3}}\right )}}{3 \, \left (-a^{2} b\right )^{\frac {2}{3}}}\right ) + \left (-\frac {e^{12}}{a b^{2} d^{3}}\right )^{\frac {1}{3}} \log \left ({\left (2 \, a b d x + 2 \, a b c - \left (-a^{2} b\right )^{\frac {2}{3}}\right )}^{2} + 3 \, \left (-a^{2} b\right )^{\frac {4}{3}}\right ) - 2 \, \left (-\frac {e^{12}}{a b^{2} d^{3}}\right )^{\frac {1}{3}} \log \left ({\left | a b d x + a b c + \left (-a^{2} b\right )^{\frac {2}{3}} \right |}\right )}{9 \, b} - \frac {d^{2} e^{4} x^{2} + 2 \, c d e^{4} x + c^{2} e^{4}}{3 \, {\left (b d^{3} x^{3} + 3 \, b c d^{2} x^{2} + 3 \, b c^{2} d x + b c^{3} + a\right )} b d} \]

input
integrate((d*e*x+c*e)^4/(a+b*(d*x+c)^3)^2,x, algorithm="giac")
 
output
-1/9*(2*sqrt(3)*(-e^12/(a*b^2*d^3))^(1/3)*arctan(1/3*sqrt(3)*(2*a*b*d*x + 
2*a*b*c - (-a^2*b)^(2/3))/(-a^2*b)^(2/3)) + (-e^12/(a*b^2*d^3))^(1/3)*log( 
(2*a*b*d*x + 2*a*b*c - (-a^2*b)^(2/3))^2 + 3*(-a^2*b)^(4/3)) - 2*(-e^12/(a 
*b^2*d^3))^(1/3)*log(abs(a*b*d*x + a*b*c + (-a^2*b)^(2/3))))/b - 1/3*(d^2* 
e^4*x^2 + 2*c*d*e^4*x + c^2*e^4)/((b*d^3*x^3 + 3*b*c*d^2*x^2 + 3*b*c^2*d*x 
 + b*c^3 + a)*b*d)
 
3.29.94.9 Mupad [B] (verification not implemented)

Time = 6.18 (sec) , antiderivative size = 266, normalized size of antiderivative = 1.45 \[ \int \frac {(c e+d e x)^4}{\left (a+b (c+d x)^3\right )^2} \, dx=\frac {2\,e^4\,\ln \left (b^{1/3}\,c-{\left (-a\right )}^{1/3}+b^{1/3}\,d\,x\right )}{9\,{\left (-a\right )}^{1/3}\,b^{5/3}\,d}-\frac {\frac {d\,e^4\,x^2}{3\,b}+\frac {c^2\,e^4}{3\,b\,d}+\frac {2\,c\,e^4\,x}{3\,b}}{b\,c^3+3\,b\,c^2\,d\,x+3\,b\,c\,d^2\,x^2+b\,d^3\,x^3+a}-\frac {\ln \left (\frac {4\,c\,d^4\,e^8}{9\,b}-\frac {{\left (-a\right )}^{1/3}\,d^4\,{\left (e^4+\sqrt {3}\,e^4\,1{}\mathrm {i}\right )}^2}{9\,b^{4/3}}+\frac {4\,d^5\,e^8\,x}{9\,b}\right )\,\left (e^4+\sqrt {3}\,e^4\,1{}\mathrm {i}\right )}{9\,{\left (-a\right )}^{1/3}\,b^{5/3}\,d}+\frac {e^4\,\ln \left (\frac {4\,c\,d^4\,e^8}{9\,b}+\frac {4\,d^5\,e^8\,x}{9\,b}-\frac {9\,{\left (-a\right )}^{1/3}\,d^4\,e^8\,{\left (-\frac {1}{9}+\frac {\sqrt {3}\,1{}\mathrm {i}}{9}\right )}^2}{b^{4/3}}\right )\,\left (-\frac {1}{9}+\frac {\sqrt {3}\,1{}\mathrm {i}}{9}\right )}{{\left (-a\right )}^{1/3}\,b^{5/3}\,d} \]

input
int((c*e + d*e*x)^4/(a + b*(c + d*x)^3)^2,x)
 
output
(2*e^4*log(b^(1/3)*c - (-a)^(1/3) + b^(1/3)*d*x))/(9*(-a)^(1/3)*b^(5/3)*d) 
 - ((d*e^4*x^2)/(3*b) + (c^2*e^4)/(3*b*d) + (2*c*e^4*x)/(3*b))/(a + b*c^3 
+ b*d^3*x^3 + 3*b*c^2*d*x + 3*b*c*d^2*x^2) - (log((4*c*d^4*e^8)/(9*b) - (( 
-a)^(1/3)*d^4*(3^(1/2)*e^4*1i + e^4)^2)/(9*b^(4/3)) + (4*d^5*e^8*x)/(9*b)) 
*(3^(1/2)*e^4*1i + e^4))/(9*(-a)^(1/3)*b^(5/3)*d) + (e^4*log((4*c*d^4*e^8) 
/(9*b) + (4*d^5*e^8*x)/(9*b) - (9*(-a)^(1/3)*d^4*e^8*((3^(1/2)*1i)/9 - 1/9 
)^2)/b^(4/3))*((3^(1/2)*1i)/9 - 1/9))/((-a)^(1/3)*b^(5/3)*d)